
A Semi-Automatic Approach for Semantic IoT 
Service Composition

Grigorios Tzortzis and Evaggelos Spyrou
Institute of Informatics and Telecommunications

NCSR “Demokritos”, Greece



Problem Definition (1)

Internet of Things (IoT)
● Integration of everyday physical objects with the world wide web
● IoT adopts a service-oriented architecture (SoA), where all “things” are 

exposed as (semantic) web services 

Service Composition in IoT
● Combine the available services in an IoT ecosystem to construct a new, 

composite service that fulfils some desired functionality
● Discover appropriate services and interconnect them
● Ensure that all services are invokable 



Problem Definition (2)

Service composition is primarily about matching service outputs (and 
effects) to service inputs (and preconditions)

Approaches to service composition
● Manual vs Semi-automatic vs Automatic
● Syntactic vs Semantic



Necessary Tools

● Ontology
○ Semantic annotations for services
○ We propose a smart meeting room ontology

● IoT-ready platform
○ Interconnection and coordination of vast number of heterogeneous devices
○ Devices exposed as services
○ Ontology support and reasoning over ontologies
○ We use the SYNAISTHISI platform1 developed at IIT, NCSR “Demokritos”

1G. Pierris et al., SYNAISTHISI: An Enabling Platform for the Current Internet of Things Ecosystem, PCI, 2015



The SYNAISTHISI platform (1)
● Available services are registered into a service registry, implemented by an 

RDF triplestore

● They follow the IoT paradigm and are divided into:
○ S-type services corresponding to sensors that sense the physical world

○ P-type services corresponding to processors (algorithms) that process the measurements of 
the S-type services and/or the processed results of other P-type services

○ A-type services corresponding to actuators that are used for the actuation of devices/signals 
based on the acquired results.



The SYNAISTHISI platform (2)

● Services exchange information with messages via 
the MoM

● Information is shared by “publishing” through 
specific topics

● Services that need to use information, “subscribe” 
to the appropriate topics



Smart Meeting Room Ontology1

Models the SPA services of smart meeting rooms
● Domain-specific
● High-level and low-level concepts
● Enhance service discovery and composition
● Reuses existing ontologies — IoT-A, SSN, QU, QUDT
● Integrated into the SYNAISTHISI platform

Statistics
● ~200 classes
● ~50 Datatype properties
● ~50 Object properties 

1Preliminary version: C. Akasiadis et al., Developing Complex Services in an IoT Ecosystem, WF-IoT, 2015



Resource Model (excerpt)
Describes the characteritics of the device hidden behind a service



Service Model (excerpt)
Describes the characteristics of the service exposing the device



Service Composition

We propose a semi-automatic approach for SPA service composition as 
part of the SYNAISTHISI platform

Main features
● Utilizes semantics of the smart meeting room ontology
● Minimum human intervention

○ The platform guides the developer in building a composite service
○ Service discovery and interconnection is the responsibility of the platform

● Based on matching services’ outputs to inputs
○ Preconditions are ignored, effects are treated as special type of output of A-type services



Service Composition Algorithm



● The service request contains the desired outputs of the composite service
○ Outputs are declared using a suitable concept from an ontology

Service Composition Algorithm



● The service request contains the desired outputs of the composite service
○ Outputs are declared using a suitable concept from an ontology

● A matching list contains services whose output matches a particular input of another service
○ An independent service discovery is launched to populate the matching list
○ Utilization of semantics in finding matches (explained later)
○ The developer must choose a service from the matching list presented to him

Service Composition Algorithm



● The service request contains the desired outputs of the composite service
○ Outputs are declared using a suitable concept from an ontology

● A matching list contains services whose output matches a particular input of another service
○ An independent service discovery is launched to populate the matching list
○ Utilization of semantics in finding matches (explained later)
○ The developer must choose a service from the matching list presented to him

● If non-empty matching lists are found for all inputs of a service, the service is invokable
○ S-type services can be readily invoked when selected → Service discovery is unnecessary

Service Composition Algorithm



Approximate 
match

Semantic Relaxation

Exploit semantic hierarchical relationships to decide if output concept A 
matches input concept B 
● exact(A,B) → Same URI or OWL equivalent
● plugin(A,B) → A is subsumed by B
● subsume(A,B) → A subsumes B

exact < plugin < subsume in terms of semantic relaxation degree



Advantages of the Service Composition Approach

● Guarantees that the composite service:
○ Satisfies the service request
○ All its services can be invoked

● Semantic relaxation
○ Avoid syntactic barriers
○ Permit approximate solutions when exact ones do not exist

● Service discovery and interconnection is the responsibility of the platform

● The developer only defines a service request and selects services from 
platform-generated matching lists

○ Even experienced users can perform service composition



Use Case: Creating a People Counting Service (1)
● One of the pilots of the SYNAISTHISI project was a smart meeting room

● Among the goals was the minimization of user discomfort, environmental 
impact and monetary costs

● To achieve these goals, an estimation of the number of people present within 
the room was necessary

● Since cameras were installed, a computer vision approach was followed

● Several services were developed to support the functionalities of the smart 
meeting room



Use Case: Creating a People Counting Service (2)
The complex people counting service may be composed using simpler services 

The developer should have a basic knowledge in the field of 
computer vision



Use Case: Creating a People Counting Service (3)

The resulting composite service:

More details and evaluation of this algorithm may be found in:
D. Sgouropoulos, E. Spyrou, G. Siantikos and T. Giannakopoulos, Counting and Tracking People in a Smart 
Room: an IoT Approach, SMAP, 2015. 



Open Issues and Future Work (1)

● Use lightweight standards to annotate services and their IOPEs
○ SAWSDL, hRest
○ More native to services

● Pursue semantically-aware automatic service composition
○ Graph-based
○ AI planning-based
○ Appropriate for end-users that are not developers



Open Issues and Future Work (2)

● Service composition should consider:
○ Functional requirements
○ Non-functional requirements e.g. location, reputation, QoS
○ User preferences

●

○ Exploit service composition to deliver complex applications to end-users 



Thank you!

Questions?


