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Problem Definition (1)

Internet of Things (loT)
e Integration of everyday physical objects with the world wide web
e |oT adopts a service-oriented architecture (SoA), where all “things” are
exposed as (semantic) web services

Service Compositionin loT
e Combine the available services in an loT ecosystem to construct a new,
composite service that fulfils some desired functionality

e Discover appropriate services and interconnect them
Ensure that all services are invokable




Service composition is primarily about matching service outputs (and
effects) to service inputs (and preconditions)

Problem Definition (2)
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Approaches to service composition
e Manual vs Semi-automatic vs Automatic
e Syntactic vs Semantic




Necessary Tools

e Ontology
o Semantic annotations for services
o We propose a smart meeting room ontology

e |oT-ready platform
o Interconnection and coordination of vast number of heterogeneous devices
o Devices exposed as services
o Ontology support and reasoning over ontologies
o We use the SYNAISTHISI platform® developed at IIT, NCSR “Demokritos”

'G. Pierris et al., SYNAISTHISI: An Enabling Platform for the Current Internet of Things Ecosyste



ﬁ SUNAISTHISI

e Available services are registered into a service registry, implemented by an
RDF triplestore

The SYNAISTHISI platform (1)

e They follow the 0T paradigm and are divided into:
O  S-type services corresponding to sensors that sense the physical world

O  P-type services corresponding to processors (algorithms) that process the measurements of
the S-type services and/or the processed results of other P-type services

O  A-type services corresponding to actuators that are used for the actuation of devices/signals
based on the acquired results.




The SYNAISTHISI platform (2)

e Services exchange information with messages via
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Smart Meeting Room Ontology’

Models the SPA services of smart meeting rooms
Domain-specific

High-level and low-level concepts

Enhance service discovery and composition
Reuses existing ontologies — loT-A, SSN, QU, QUDT
Integrated into the SYNAISTHISI platform

Statistics
e ~200 classes
e ~50 Datatype properties
e ~50 Object properties

"Preliminary version: C. Akasiadis et al., Developing Complex Services in an loT Ecosystem,




Resource Model (excerpt) ﬁ‘sqN

Describes the characteritics of the device hidden behind a service
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Service Model (excerpt) ﬁ SYNAISTHIS]

Describes the characteristics of the service exposing the device
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We propose a semi-automatic approach for SPA service composition as
part of the SYNAISTHISI platform

Service Composition

Main features

e Utilizes semantics of the smart meeting room ontology

e Minimum human intervention

o The platform guides the developer in building a composite service
o Service discovery and interconnection is the responsibility of the platform

e Based on matching services’ outputs to inputs
o Preconditions are ignored, effects are treated as special type of output




Service Composition Algorithm
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...senses the physical world and
produces output “X"
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e The service request contains the desired outputs of the composite service
o  Outputs are declared using a suitable concept from an ontology
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e The service request contains the desired outputs of the composite service
o  Outputs are declared using a suitable concept from an ontology

e A matching list contains services whose output matches a particular input of another service

o Anindependent service discovery is launched to populate the matching list

o Utilization of semantics in finding matches (explained later)

o The developer must choose a service from the matching list presented to hi




Service Composition Algorithm ﬁSlJN
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ﬁ SUNAISTHISI

Exploit semantic hierarchical relationships to decide if output concept A
matches input concept B

e cxact (A,B) — Same URI or OWL equivalent

e plugin(A,B) — AissubsumedbyB

e subsume (A,B) — A subsumes B }

Semantic Relaxation

Approximate
match

exact < plugin < subsume in terms of semantic relaxation degree




ﬁ SUNAISTHISI

Advantages of the Service Composition Approach

e Guarantees that the composite service:
o Satisfies the service request
o Allits services can be invoked

e Semantic relaxation

o Avoid syntactic barriers
o Permit approximate solutions when exact ones do not exist

e Service discovery and interconnection is the responsibility of the platform

e The developer only defines a service request and selects services from

platform-generated matching lists
o Even experienced users can perform service composition




Use Case: Creating a People Counting Service (1)

e One of the pilots of the SYNAISTHISI project was a smart meeting room

e Among the goals was the minimization of user discomfort, environmental
impact and monetary costs

e To achieve these goals, an estimation of the number of people present within
the room was necessary

e Since cameras were installed, a computer vision approach was followed

e Several services were developed to support the functionalities of the smart
meeting room
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Use Case: Creating a People Counting Service (2)

The complex people counting service may be composed using simpler services

| want a service
that counts people

in the smart
meeting room

developer

“no_of persons’

the platform generates the
appropriate query
S(no_of persons)

The developer should have a basic knowledge in the field of
computer vision

specifies a service|
request to discover
services with output
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an S-type service; no
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Use Case: Creating a People Counting Service (3)

The resulting composite service:
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More details and evaluation of this algorithm may be found in:
D. Sgouropoulos, E. Spyrou, G. Siantikos and T. Giannakopoulos, Counting and Tracking People in a Smart
Room: an loT Approach, SMAP, 2015.




§ SUNAISTHIS|

e Use lightweight standards to annotate services and their IOPEs
o  SAWSDL, hRest
o More native to services

Open Issues and Future Work (1)

e Pursue semantically-aware automatic service composition
o Graph-based
o Al planning-based
o Appropriate for end-users that are not developers




§ SUNAISTHIS|

Open Issues and Future Work (2)

e Service composition should consider:
o Functional requirements
o Non-functional requirements e.g. location, reputation, QoS
o User preferences

e Service marketplace that supports the full cycle of producing, delivering and

trading a service
o Exploit service composition to deliver complex applications to end-users
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Questions?
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