2016 2016

A Semi-Automatic Approach for Semantic loT
Service Composition
Grigorios Tzortzis and Evaggelos Spyrou

Institute of Informatics and Telecommunications
NCSR “Demokritos”, Greece

Problem Definition (1)

Internet of Things (loT)
e Integration of everyday physical objects with the world wide web
e |oT adopts a service-oriented architecture (SoA), where all “things” are
exposed as (semantic) web services

Service Compositionin loT
e Combine the available services in an loT ecosystem to construct a new,
composite service that fulfils some desired functionality

e Discover appropriate services and interconnect them
Ensure that all services are invokable

Service composition is primarily about matching service outputs (and
effects) to service inputs (and preconditions)

Problem Definition (2)

e

ey
S1 —_— 84 —>
= B

c / E

Available: A Target: F

Approaches to service composition
e Manual vs Semi-automatic vs Automatic
e Syntactic vs Semantic

Necessary Tools

e Ontology
o Semantic annotations for services
o We propose a smart meeting room ontology

e |oT-ready platform
o Interconnection and coordination of vast number of heterogeneous devices
o Devices exposed as services
o Ontology support and reasoning over ontologies
o We use the SYNAISTHISI platform® developed at IIT, NCSR “Demokritos”

'G. Pierris et al., SYNAISTHISI: An Enabling Platform for the Current Internet of Things Ecosyste

ﬁ SUNAISTHISI

e Available services are registered into a service registry, implemented by an
RDF triplestore

The SYNAISTHISI platform (1)

e They follow the 0T paradigm and are divided into:
O S-type services corresponding to sensors that sense the physical world

O P-type services corresponding to processors (algorithms) that process the measurements of
the S-type services and/or the processed results of other P-type services

O A-type services corresponding to actuators that are used for the actuation of devices/signals
based on the acquired results.

The SYNAISTHISI platform (2)

e Services exchange information with messages via

ﬁ SUNAISTHISI

the MoM [ﬁ SUNAISTHIS]]
|

e Information is shared by “publishing” through

RGBi TForegTound

. . RGB
specific topics
?

e Services that need to use information, “subscribe” [Camera

LR Al Subtraction

|

= publish
— +subscn’.be

to the appropriate topics

Smart Meeting Room Ontology’

Models the SPA services of smart meeting rooms
Domain-specific

High-level and low-level concepts

Enhance service discovery and composition
Reuses existing ontologies — loT-A, SSN, QU, QUDT
Integrated into the SYNAISTHISI platform

Statistics
e ~200 classes
e ~50 Datatype properties
e ~50 Object properties

"Preliminary version: C. Akasiadis et al., Developing Complex Services in an loT Ecosystem,

Resource Model (excerpt) ﬁ‘sqN

Describes the characteritics of the device hidden behind a service
[mj [BackgroundSubtractionResource]

/ PlugMeterResource

\ / — LightSensorResource
(SoundDirectionFacesResource] are—[PersnnDetectionTrackingResour:e] HumiditySensorResource —are="_—
— \£TemperatureSensorResource]
SoundDirectionResource [ComplexEventRecogmtmnResource] <

""'ars..’ [Ima eProcessin Resource]

= Rk . . . [MicrophoneArrayResourceJ
AudioLevelResource AudioProcessingResource / SensorResource

are=(actuatorResource

- \ DecisionMakerResource

RecommendationSystemResource |——=are——
FusionResource T 7

ResourceOwner ProcessingUnitResource are are\

are (inerONOFFActuatorResource]
* NetworkResource OnDeviceResource
-l
> i T e
hasOwnerName hasOwnerID hasOwnerLink _ = = isHostedOn
(DataTypeProperty) (DataTypeProperty) (DataTypeProperty) b

1 kY

L} L} L}
are
[xsd: string] [xsd :aanRI] [xsd:aanRI] [WirelessNetworkj [WiredNetwork]
FEs0 - = ke hasResourcelD \ /
asowner | o ——=— —— T - e R 0] aslag (DataTypeProperty) are
; hasName -— > . hasNetwork isExposedThroughService
ectPropert
(ObjectProperty) (DataTypeProperty) hasProductInfo hasResourcelLocation (Objectvcperty) (Objecl;voperty) (DataTypeProperty)
1 v
[ResourceOwnerj [xsd:string] [Product]._ - [Location] [Network] [sm:ResourceService] [xsd:string] [xsd:anyUR[]
— : ~ - :: — —
- ——— -
hasModelName hasVersion hasImplementationLanguage—" hasManufacturer ’__-—’ ,,’ : ~.
(DataTyp?Prcperty) (DataTyp?Propertv) (DataTypeProperry) (DataTypelPrcperty) “_,' e i ~.
e T hasPort hasIPV4 hasIPV6 hasMACAddress
[xsd.strlngj {xsd.strmg] - - (DataTypeProperty) (DataTypeProperty) (DataTypeProperty) (DataTypeProperty)
1 1 L] L]
[xsd:unsigned[ntj [xsd:s‘cring] (xsd:string] (xsd:stl‘ing]
hasAltitude - = —HESCOTAEY — - — — hastattmde ™ — = — hasbulding ~ y T FSROBHT — = = RaSGTOPatoenton — “HasToTat acation— -

M xsd:string xsd:string xsd:float xsd:string xsd:string xsd:anyURI xsd:anyURI

Service Model (excerpt) ﬁ SYNAISTHIS]

Describes the characteristics of the service exposing the device

hasServiceOutput _ _
(ObjectProperty) * endpointPath
has;fer'vicePrice——h- -
!

~= endpointPort

* -
/ .
o gses e . e (DataTypePraperty)"' wsd:unsignedint
R has _nriceEndpmnt* ServiceEndpoint
I rﬂt? jectProperty) ~ endpointHost

¥sd:string

| Ko AW "'"‘*---.._{DaltaTafperpert\v]_'.r

| / / ref:hasOwner _.p i

| -’.u', ;B'hjectPrnpertﬂ \\endpuintnescription_h wsd: skrin
7y ,’ - # (ObjectProperty) -»> endpointProtocol ’
#, - (DataTypeProperty) sstring

L
Wty - hasEffect
& ~~ _ (ObjectProperty) =~ ¥
o (Somee -

=~ - hasServiceParameter _ ____ hasParameterType _ .
“\\:*-\{ObjectPropertv] | Parameter {DatiTypaProperty) | xsd:anyURI

\\:\\ ~.
\ asServiceSchedule
~
W :'E Gt e | ServiceSchedule
e Peerorey)

\onTypermoperty) = (xs¢isring are
g ;
are A h@SEErviEEID :
(D‘a\taTvperperw)"’ xsd:anyURI Output Input
— :]
[rm:Owner] ha¥precondition _ > G

(ObjactProperty)
A\

hasServicelnput
{ObjectProperty) ~ — >

p R

[Precondition J

\

are

We propose a semi-automatic approach for SPA service composition as
part of the SYNAISTHISI platform

Service Composition

Main features

e Utilizes semantics of the smart meeting room ontology

e Minimum human intervention

o The platform guides the developer in building a composite service
o Service discovery and interconnection is the responsibility of the platform

e Based on matching services’ outputs to inputs
o Preconditions are ignored, effects are treated as special type of output

Service Composition Algorithm

| want a service

with output “X"

specifies a service
request to
discover services
with output “X”

developer

platform generates a
appropriate quew@

7

STEP 1: matching list
of S(X)

la L
ol L)

X' is an approx. match of X

STEP 2: developer
chooses s,

s, is an
appropriate

service

} U

let us assume that S, has
inputs “A”, “B"

STEP 3: generated
queries: S(A), S(B)

repeat
process

o

ﬁ‘sqN

until: S-type services are selected

e vl

RESULT: composed service...

...senses the physical world and
produces output “X"

Service Composition Algorithm

| want a service

with output “X"

specifies a service
request to
discover services
with output “X”

developer

platform generates a
appropriate quew@

7

STEP 1: matching list
of S(X)

la L
ol L)

X' is an approx. match of X

STEP 2: developer
chooses s,

s, is an
appropriate

service

} U

let us assume that S, has
inputs “A”, “B"

STEP 3: generated
queries: S(A), S(B)

repeat
process

o

ﬁ‘sqN

until: S-type services are selected

e vl

RESULT: composed service...

...senses the physical world and
produces output “X"

e The service request contains the desired outputs of the composite service
o Outputs are declared using a suitable concept from an ontology

Service Composition Algorithm

| want a service

with output “X"

specifies a service
request to
discover services
with output “X”

developer

platform generates a
appropriate quew@

7

STEP 1: matching list
of S(X)

la L
ol L)

X' is an approx. match of X

STEP 2: developer
chooses s,

s, is an
appropriate

service

&

let us assume that S, has
inputs “A”, “B"

STEP 3: generated
queries: S(A), S(B)

repeat
process

o

ﬁsqN

until: S-type services are selected

e vl

RESULT: composed service...

L))

e .

...senses the physical world and
produces output “X"

e The service request contains the desired outputs of the composite service
o Outputs are declared using a suitable concept from an ontology

e A matching list contains services whose output matches a particular input of another service

o Anindependent service discovery is launched to populate the matching list

o Utilization of semantics in finding matches (explained later)

o The developer must choose a service from the matching list presented to hi

Service Composition Algorithm ﬁSlJN

STEP 1: matching list STEP 2: developer STEP 3: generated repeat until: S-type services are selected
| want a service of S(X) chooses s, queries: S(A), S(B) process v v
with output “X” (. : :
P X : S, is an ACCE; B CEE;

specifies a service

2 serie } ; ap:gravpi)g:te A CEE B c[:ﬁ RESULT: composed service...

discgverservit.‘:‘esn -: - N tCﬁ . CCE ‘ I "")))

Rl P e il M bl o Eer
} A : B :

platform generates a :
appropriate quew@ — let us assume that s, has ‘ "
. : roduces output “X
X .q : inputs “A”, “B” | choose... p p

o
‘/ X' is an approx. match of X
e The service request contains the desired outputs of the composite service

o Outputs are declared using a suitable concept from an ontology
e A matching list contains services whose output matches a particular input of another service
o Anindependent service discovery is launched to populate the matching list

o Utilization of semantics in finding matches (explained later)
o The developer must choose a service from the matching list presented to hi

e If non-empty matching lists are found for all inputs of a service, the
S-type services can be readily invoked when selected — Service disc

...senses the physical world and

(@)

ﬁ SUNAISTHISI

Exploit semantic hierarchical relationships to decide if output concept A
matches input concept B

e cxact (A,B) — Same URI or OWL equivalent

e plugin(A,B) — AissubsumedbyB

e subsume (A,B) — A subsumes B }

Semantic Relaxation

Approximate
match

exact < plugin < subsume in terms of semantic relaxation degree

ﬁ SUNAISTHISI

Advantages of the Service Composition Approach

e Guarantees that the composite service:
o Satisfies the service request
o Allits services can be invoked

e Semantic relaxation

o Avoid syntactic barriers
o Permit approximate solutions when exact ones do not exist

e Service discovery and interconnection is the responsibility of the platform

e The developer only defines a service request and selects services from

platform-generated matching lists
o Even experienced users can perform service composition

Use Case: Creating a People Counting Service (1)

e One of the pilots of the SYNAISTHISI project was a smart meeting room

e Among the goals was the minimization of user discomfort, environmental
impact and monetary costs

e To achieve these goals, an estimation of the number of people present within
the room was necessary

e Since cameras were installed, a computer vision approach was followed

e Several services were developed to support the functionalities of the smart
meeting room

SYN

Use Case: Creating a People Counting Service (2)

The complex people counting service may be composed using simpler services

| want a service
that counts people

in the smart
meeting room

developer

“no_of persons’

the platform generates the
appropriate query
S(no_of persons)

The developer should have a basic knowledge in the field of
computer vision

specifies a service|
request to discover
services with output

STEP 1: results of
S(no_of_persons)

(
nop ¢ person [
tracking (1depth
{1 nop
f person

fnop: fused_no_of persons
nop: no_of_persons
fg: foreground

note: fnop is a plugin match
of nop

STEP 2: developer
chooses
person
fusion is an
appropriate

note: the developer did not
choose the exact match,
but preferred the plugin
match

STEP 3: generated que-
ries: S(no_of_persons) x2

f
nop ¢4 Person fg
tracking (1depth

single result

note: in some cases a
single service is discovered
for a given output; the
algorithm advances
automatically to the next

step, i.e., without the
developer's intervention

STEP 4: generated queries:

S(foreground)x2

dynamic
fg <1 0 < RGB

S(depth)x2

depth < stereo
camera
camera

a9

| choose
dynamic bg

‘ | choose
stereo camera

note: the stereo camera is
an S-type service; no
further queries required

STEP 5: generated
query: S(RGB)x2

camera
camera

&

note: the static camera is
an S-type service; no
further queries required

| choose
static camera

Use Case: Creating a People Counting Service (3)

The resulting composite service:

fg 1 d . \ RGB
¥ . ¥ i .
namic static camera]
nop person — y g f<::
xﬂ stereo camera
frnop person depth * J
fusion RN _ \ RGB .]
person [«—— dynamic bg J(— static camera
" \m stereo camera 1
depth * J

More details and evaluation of this algorithm may be found in:
D. Sgouropoulos, E. Spyrou, G. Siantikos and T. Giannakopoulos, Counting and Tracking People in a Smart
Room: an loT Approach, SMAP, 2015.

§ SUNAISTHIS|

e Use lightweight standards to annotate services and their IOPEs
o SAWSDL, hRest
o More native to services

Open Issues and Future Work (1)

e Pursue semantically-aware automatic service composition
o Graph-based
o Al planning-based
o Appropriate for end-users that are not developers

§ SUNAISTHIS|

Open Issues and Future Work (2)

e Service composition should consider:
o Functional requirements
o Non-functional requirements e.g. location, reputation, QoS
o User preferences

e Service marketplace that supports the full cycle of producing, delivering and

trading a service
o Exploit service composition to deliver complex applications to end-users

Thank you!

Questions?

BN

